Tools for Sequence-Based miRNA Target Prediction: What to Choose?

نویسندگان

  • Ángela L. Riffo-Campos
  • Ismael Riquelme
  • Priscilla Brebi-Mieville
چکیده

MicroRNAs (miRNAs) are defined as small non-coding RNAs ~22 nt in length. They regulate gene expression at a post-transcriptional level through complementary base pairing with the target mRNA, leading to mRNA degradation and therefore blocking translation. In the last decade, the dysfunction of miRNAs has been related to the development and progression of many diseases. Currently, researchers need a method to identify precisely the miRNA targets, prior to applying experimental approaches that allow a better functional characterization of miRNAs in biological processes and can thus predict their effects. Computational prediction tools provide a rapid method to identify putative miRNA targets. However, since a large number of tools for the prediction of miRNA:mRNA interactions have been developed, all with different algorithms, the biological researcher sometimes does not know which is the best choice for his study and many times does not understand the bioinformatic basis of these tools. This review describes the biological fundamentals of these prediction tools, characterizes the main sequence-based algorithms, and offers some insights into their uses by biologists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common features of microRNA target prediction tools

The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial st...

متن کامل

Computational analysis of miRNA targets in plants: current status and challenges

Plant microRNAs (miRNA) target recognition mechanism was once thought to be simple and straightforward, i.e. through perfect reverse complementary matching; therefore, very few target prediction tools and algorithms were developed for plants as compared to those for animals. However, the discovery of transcription suppression and the more recent observation of widespread translational regulatio...

متن کامل

miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data

BACKGROUND MicroRNAs (miRNA) are short nucleotides that down-regulate its target genes. Various miRNA target prediction algorithms have used sequence complementarity between miRNA and its targets. Recently, other algorithms tried to improve sequence-based miRNA target prediction by exploiting miRNA-mRNA expression profile data. Some web-based tools are also introduced to help researchers predic...

متن کامل

A compilation of Web-based research tools for miRNA analysis.

Since the discovery of microRNAs (miRNAs), a class of noncoding RNAs that regulate the gene expression posttranscriptionally in sequence-specific manner, there has been a release of number of tools useful for both basic and advanced applications. This is because of the significance of miRNAs in many pathophysiological conditions including cancer. Numerous bioinformatics tools that have been dev...

متن کامل

Computational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)

Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016